首页> 外文OA文献 >Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models
【2h】

Generating High-Quality and Informative Conversation Responses with Sequence-to-Sequence Models

机译:用。生成高质量和信息性的对话响应   序列到序列模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sequence-to-sequence models have been applied to the conversation responsegeneration problem where the source sequence is the conversation history andthe target sequence is the response. Unlike translation, conversationresponding is inherently creative. The generation of long, informative,coherent, and diverse responses remains a hard task. In this work, we focus onthe single turn setting. We add self-attention to the decoder to maintaincoherence in longer responses, and we propose a practical approach, called theglimpse-model, for scaling to large datasets. We introduce a stochasticbeam-search algorithm with segment-by-segment reranking which lets us injectdiversity earlier in the generation process. We trained on a combined data setof over 2.3B conversation messages mined from the web. In human evaluationstudies, our method produces longer responses overall, with a higher proportionrated as acceptable and excellent as length increases, compared to baselinesequence-to-sequence models with explicit length-promotion. A back-off strategyproduces better responses overall, in the full spectrum of lengths.
机译:序列到序列模型已应用于会话响应生成问题,其中源序列是会话历史,目标序列是响应。与翻译不同,对话响应本质上是创造性的。产生长久的,信息丰富的,连贯的和多样的反应仍然是一项艰巨的任务。在这项工作中,我们专注于单匝设置。我们在解码器中增加了注意力,以保持较长响应中的一致性,并且我们提出了一种实用的方法,称为theglimpse模型,用于缩放到大型数据集。我们引入了具有逐段重新排序的随机光束搜索算法,该算法使我们可以在生成过程中更早地注入多样性。我们对来自网络的超过2.3B对话消息的组合数据集进行了培训。在人类评估研究中,与具有明显长度增长的基线序列到序列模型相比,我们的方法总体上产生更长的响应,并且随着长度的增加,比例更高,可以接受,并且效果更好。退避策略可以在整个长度范围内总体上产生更好的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号